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An analytical model for isothermal

and isochronal transformation kinetics
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Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569, Stuttgart, Germany
E-mail: f.sommer@mf.mpg.de

An analytical model for the kinetics of phase transformations has been discussed that
combines three overlapping processes: nucleation, growth, and impingement. Two kinds of
nucleation have been considered in particular: a mixture of site saturation and continuous
nucleation and Avrami nucleation. In combination with either interface-controlled growth
or volume diffusion controlled growth, and incorporating the effect of impingement of the
growing particles, a general analytical description of the transformation kinetics has been
given for both isothermally and isochronally conducted transformations. The
corresponding kinetic parameters are time and temperature dependent. In specific, limiting
cases, the model reduces to the so-called Johnson-Mehl-Avrami description of
transformation kinetics. The analytical model has been verified by exact results obtained
from numerical calculations. The influences of the different nucleation and growth modes
on the time and temperature dependencies of the transformation rate and the kinetic
parameters have been demonstrated. C© 2004 Kluwer Academic Publishers

1. Introduction
Solid-state phase transformations play an important
role in the production of very many materials. There-
fore, a great interest exists for a comprehensive descrip-
tion of the kinetics, i.e., the time-temperature behaviour
of phase transformations. Solid-state phase transforma-
tions are generally the outcomes, for both isothermally
and non-isothermally conducted annealings, of three,
often simultaneously operating, mechanisms: nucle-
ation, growth and impingement.

For special cases of nucleation, growth and impinge-
ment the well-known analytical description of transfor-
mation kinetics according to Johnson, Mehl and Avrami
(JMA) [1–6] holds. Recently a more general modular,
numerical kinetic model [7–9] has been proposed that
recognizes the three mechanisms, nucleation, growth,
and impingement of growing new phase particles, as
entities that can be modeled separately. The model is
applicable to both isothermally conducted (time depen-
dent) and isochronally conducted (temperature depen-
dent) transformations. The kinetic model parameters of
the JMA description and the modular model, the growth
(Avrami) exponent, n, the overall effective activation
energy, Q, and the rate constant, K0, depend on the op-
erating nucleation and growth modes. Applying such
a model to a phase transformation, it is assumed that
throughout the temperature/time range of interest the
transformation mechanism is the same (which is called
“iso-kinetic”) and the kinetic parameters are assumed
to be constant with respect to time and temperature
[7–10].

∗Author to whom all correspondence should be addressed.

Many experimental results of phase transformation
kinetics have been reported and fitted with a JMA (-like)
model. Often the measured kinetics cannot be described
with constant values for n and Q within a JMA-like
model (e.g., [11–13]): the fitted parameters, n and Q,
are different for different stages of the transformation.
This has been explained by corresponding changes in
the nucleation and growth mechanisms [11–13], i.e.,
the transformation process is not iso-kinetic. Fitting of
JMA kinetics to such phase transformations therefore
only yields a phenomenological description.

In the recently proposed modular kinetic model, an
expression for the overall effective activation energy,
Q, was given, incorporating the activation energies for
nucleation, QN, and for growth, QG, as follows [10]:

Q =
d
m QG + (

n − d
m

)
QN

n
(1)

where the value of n is equal to d/m for site satu-
ration and equal to d/m + 1 for continuous nucle-
ation, with m as growth mode parameter (m = 1 for
interface-controlled growth; m = 2 for volume diffu-
sion controlled growth) and d as the dimensionality of
the growth (d = 1, 2, 3).

In principle, JMA kinetics is not applicable, if a mix-
ture of nucleation mechanisms prevails. Equation 1 has
been verified analytically only for the extreme con-
ditions, i.e., for pure continuous nucleation or pure
site saturation as nucleation mechanisms [10]. How-
ever, it has been shown numerically that a JMA-like
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description provides a reasonable fit for intermedi-
ate cases, i.e., transformation controlled by mixed nu-
cleation or Avrami nucleation [8]. Against this back-
ground, in the present work an analytical model for
the solid-state phase transformation has been devel-
oped that incorporates the three mechanisms: nucle-
ation, growth and impingement. The model is appli-
cable to both isothermally and isochronally conducted
transformations, with time or temperature dependent
kinetic parameters. On this basis Equation 1 has been
analytically and generally validated. Only for special
cases, the model reduces to the well-known JMA de-
scription of transformation kinetics.

2. Theoretical basis
2.1. The path variable for isothermal

and isochronal transformations
It appears appropriate to introduce a path variable, β,
which depends on the thermal history, i.e., the path fol-
lowed in the temperature-time diagram: T (t) prescribes
β [7]. The transformed fraction, f , depends on the path
variable β through:

f = F(β) (2)

The dependence of the path variable β on the thermal
history can be described as the integral over time of a
rate constant K (T (t)), not conceived to be dependent
on t other than through T :

β =
∫

K (T (t)) dt (3a)

with K as the rate constant. It follows from Equation 3
for isothermal annealing:

β = K (T )t (3b)

For many applications, K (T ) can be given by an
Arrhenius-type equation

K (T (t)) = K0 exp

(
− Q

RT (t)

)
(4)

with Q as the overall, effective activation energy, K0
as the temperature and time-independent rate and R as
the gas constant.

2.2. Modes of nucleation, growth,
and impingement

In the following a brief description of the applied nu-
cleation, growth and impingement modes is given.

The term site saturation is used in those cases where
the number of (supercritical) nuclei does not change
during the transformation: all nuclei, of number N ∗ per
unit volume, are present at t = 0 already:

Ṅ (T ) = N ∗δ(t − 0) (5)

with δ(t − 0) denoting the Dirac function.

The continuous nucleation rate per unit volume (i.e.,
the rate of formation of particles (nuclei) of supercriti-
cal size) is at large undercooling only determined by the
rate of the jumping of atoms through the interface be-
tween the nucleus of critical size and the parent phase,
which can be given by an Arrhenius term:

Ṅ (T (t)) = N0 exp

(
− QN

RT (t)

)
(6)

where N0 is a temperature-independent nucleation rate,
and QN is the temperature-independent activation en-
ergy for nucleation. The number of nuclei equals 0 at
t = 0.

The mixed nucleation mode involves that the nucle-
ation rate is equal to some weighted sum of the nucle-
ation rates according to continuous nucleation and site
saturation:

Ṅ (T (t)) = N ∗δ(t − 0) + N0 exp

(
− QN

RT (t)

)
(7)

where N ∗ and N0 represent the relative contributions
of the two modes of nucleation.

So-called Avrami nucleation involves that the rate of
formation of supercritical nuclei at time t is given by
[1–4, 8],

Ṅ (T (t)) = N ′λ exp

(
−

∫ t

0
λ dτ

)
(8a)

where λ is the rate at which an individual sub-
critical nucleus becomes supercritical: λ(t = τ ) = λ0
exp(− QN

RT (τ ) ), with λ0 as a temperature-independent rate
and N ′ as the total number of subcritical nuclei at t = 0.
For isothermal annealing, λ is constant, and Equation 8a
becomes,

Ṅ (T ) = N ′λ exp(−λt) (8b)

and in these cases Avrami nucleation reduces to pure
continuous nucleation for λt → 0, and to pure site
saturation for λt → ∞. The isochronal case will be
treated in Section 3.4.

The diffusion controlled and the interface-controlled
growth can be given in a compact form [8]. At time
t , the volume Y , of a particle nucleated at time τ is
given by,

Y = g

[∫ t

τ

ν dt

] d
m

(9a)

with g as a particle-geometry factor and ν = ν0
exp(− QG

RT ) (for d and m see below Equation 1).
For interface-controlled growth, ν0 is a temperature-

independent interface velocity and QG represents the
interface energy barrier. For volume diffusion controlled
growth, ν0 equals the pre-exponential factor for diffu-
sion D0 and QG represents the activation energy for
diffusion, QD.

Isochronal annealing is characterized by T (t) =
T0 + �t with T0 as the starting temperature of the
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experiment and � as the constant heating rate (i.e.,
� = dT/dt). For isochronal annealing, Equation 9a
can then be given as,

Y = g

[∫ T (t)

T (τ )

1

�
ν dT

] d
m

(9b)

The number of supercritical nuclei formed in a unit
volume, at time τ during a time lapse dτ , is given by
Ṅ (T (τ )) dτ according to Equations 5–8. The volume
of each of these nuclei grows from τ until t according
to Equation 9 where it is supposed that every particle
grows into an infinitely large parent phase, in absence
of the other growing particles. In this hypothetical case,
the volume of all particles at time t , called the extended
volume, is given by,

V e =
∫ t

0
V Ṅ (T (τ ))Y (T (t)) dτ (10)

with V as the sample volume, which is supposed to be
constant throughout the transformation.

In reality, the particles do not grow individually into
an infinitely large parent phase: V e does not account
for the overlap of particles (hard impingement) and
their possible surrounding diffusion fields (soft im-
pingement). It is supposed here that the nuclei are dis-
persed randomly throughout the total volume. Suppose
that at time t the actually transformed volume is V t.
If the time is increased by dt , the extended and the
actual transformed volumes will increase by dV e and
dV t. From the change of the extended volume dV e,
only a part will contribute to the change of the actually
transformed volume dV t, namely a part as large as the
untransformed volume fraction [1–3, 6]. Hence,

dV t =
(

V − V t

V

)
dV e (11)

This equation can be integrated, giving the degree of
transformation, f , as

f = V t/V = 1 − exp

(
−V e

V

)
(12)

For other impingement models, see [7, 8].

3. Analytical models for transformation
involving interface-controlled growth

The strategy adopted in the sequel can be described as
follows. It is strived for to arrive in all cases considered
at an analytical formulation for the degree of trans-
formation that can be given a structure like the JMA
equation [1–6]:

f = 1 − exp

(
−K n

0 exp

(
− nQ

RT

)
αn

)
(13)

where α is a function of time and/or temperature, yet
to be specified. However, unlike the extreme cases for

which the JMA equation holds strictly, in general n, Q,
and K0 will then be time or temperature dependent. Cor-
responding, analytical formulae for n, Q, and K0 will
be obtained here after an appropriate (re)formulation of
the extended volume has been carried out.

3.1. Isothermal transformation: mixed
nucleation and interface-controlled
growth

The extended volume, for the case of isothermal trans-
formation subject to mixed nucleation and interface-
controlled growth, can be described as (see Equations 7,
9a, and 10):

V e = V
∫ t

0

(
N ∗

1 δ(τ − 0) + N01 exp

(
− QN

RT

))
g

×
(∫ t

τ

ν0 exp

(
− QG

RT

)
dt

) d
m

dτ (14)

where N ∗
1 and N01 represent the relative contribu-

tions of the two modes of nucleation considered. In-
tegration of the Dirac function can be expressed as∫

f (x)δ(x − a) dx = f (a) for an arbitrary function
f (x), and thus Equation 14 can be rewritten as:

V e = VN∗
1gν

d
m
0 exp

(
−

d
m QG

RT

)
t

d
m

+
(

1
d
m

+ 1

)
VN01gν

d
m

0

× exp

(
−

d
m QG + QN

RT

)
t

d
m +1 (15)

Hence, the overall extended volume is composed of two
parts: V e

s due to pure site saturation and V e
c due to pure

continuous nucleation, such that

V e
s = VN∗

1gν
d
m

0 exp

(
−

d
m QG

RT

)
t

d
m (16a)

V e
c =

(
1

d
m + 1

)
VN01gν

d
m

0 exp

(
−

d
m QG + QN

RT

)
t

d
m +1

(16b)

The ratio of V e
c and V e

s is given by,

V e
c

V e
s

=
(
1
/(

d
m + 1

)) + 1N01t exp
(− QN

RT

)
N ∗

1

= r2

r1
(17)

Now, in order to arrive at explicit, analytical expressions
for the growth exponent n, the effective activation en-
ergy Q, and the rate constant K0, the extended volume
is reformulated proceeding as follows. For the values
N ∗

1 and N01 in Equations 16a and b, different values
N ∗

2 and N02 can be chosen in such a way that V e is due
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to only site saturation

V e
s′ = VN∗

2gν
d
m

0 exp

(
−

d
m QG

RT

)
t

d
m (18a)

or that V e is due to only continuous nucleation

V e
c′ =

(
1

d
m + 1

)
VN02gν

d
m

0 exp

(
−

d
m QG + QN

RT

)
t

d
m +1

(18b)

with V e
s′ = V e

c′ = V e. Then, the total extended volume
can be written as

V e = 1

r1 + r2

(
r1V e

s′ + r2V e
c′
)

(19)

and

N ∗
2 = N ∗

1

(
1 + r2

r1

)
and N02 = N01

(
1 +

(
r2

r1

)−1)
(20)

For any set of V e
s and V e

c describing a phase transfor-
mation (c.f., Equation 16) both V e

s and V e
c are positive

and smaller than V e. Always two integers r1 and r2
can be found to satisfy V e

c

V e
s

= r2

r1
(c.f., Equation 17) with

r1+r2 = 10k, k = 1, 2, . . . . Further, for integers r1 and
r2, it holds that r1V e

s′ = ∑r1

i=1 V e
s (i) if V e

s (1) = V e
s (2) =

· · · = V e
s (r1) = V e

s′ ; and that r2V e
c′ = ∑r2

i=1 V e
c (i) if

V e
c (1) = V e

c (2) = · · · = V e
c (r2) = V e

c′ . Then, taking
both V e

s (i) and V e
c (i) equal to V e, Equation 19 can be

rewritten as,

V e = 1

r1 + r2

(
r1∑

i=1

V e
s (i) +

r2∑
i=1

V e
c (i)

)
(21)

Note that all volume terms in Equation 21 are
equal. Substituting all V e

s (i) and V e
c (i) according to

Equations 18a, b and 20, Equation 21 becomes,

V e = V gν
d
m

0(
d
m + 1

) 1
1+(r2/r1)−1

[(
N ∗

1

(
1 + r2

r1

)) 1
1+r2/r1

×
(

N01

(
1 +

(
r2

r1

)−1)) 1
1+(r2/r1)−1

]

× exp

(
−

d
m QG + 1

1+(r2/r1)−1 QN

RT

)
t

( d
m )+ 1

1+(r2/r1)−1

(22)

Now, Equation 12, after substitution of Equation 22,
can be rewritten as,

ln(− ln(1 − f ))

= ln




gν
d
m

0

( d
m +1)

1
1+(r2/r1)−1

(
N ∗

1

(
1 + r2

r1

)) 1
1+r2/r1

(
N01

(
1 + ( r2

r1

)−1)) 1
1+(r2/r1)−1




−
( d

m QG + 1
1+(r2/r1)−1 QN

RT

)

+
(

d

m
+ 1

1 + ( r2

r1

)−1

)
ln t (23)

where, r2/r1 depends on the transformation time, t (cf.,
Equation 17). This result can be compared with the
correspondingly rewritten Equation 13,

ln(− ln(1 − f )) = n ln(K0) − nQ

RT
+ n ln α (24)

By comparing Equations 24 and 23 time dependent ex-
pressions for n, Q, and K n

0 result, which have been
gathered in Table I. Apparently, in this case of isother-
mal annealing, α can be identified with the annealing
time t .

It is concluded that the degree of transformation in
this case of isothermal annealing can be represented by

f = 1 − exp

(
K0(t)n(t) exp

(
−n(t)Q(t)

RT

)
tn(t)

)
(25)

where the kinetic parameters, n, Q, and K n
0 are time

dependent. Only if pure site saturation or pure contin-
uous nucleation prevails, Equation 25 reduces to the
classical JMA equation with constant values for n, Q,
and K n

0 .

3.2. Isochronal transformation: mixed
nucleation and interface-controlled
growth

In isochronal annealing with a constant heating rate,
�, the nucleation rate at t = τ can be written as (c.f.,
Equation 7)

Ṅ (T (τ )) = N ∗
1 δ

(
T (τ ) − T0

�

)
+ N01 exp

(
− QG

RT (τ )

)
(26)

where, T0 = T (t = 0) and T (τ ) = T0 + �τ with
� = dT (τ )/dτ = dT (t)/dt ; (c.f., Equation 9b). Us-
ing Equations 26, 9b and 10, the extended volume at
time t can then be written as,

V e = V

[ ∫ T (t)

T0

(
N ∗

1 δ

(
T (τ ) − T0

�

)

+ N01 exp

(
− QN

RT (τ )

))
g

×
( ∫ T (t)

T (τ )
ν0 exp

(
− QG

RT (t)

)
d

T (t)

�

) d
m

d
T (τ )

�

]

(27)

In principle, the following treatment is analo-
gous to that given for isothermal transformation in
Section 3.1. However, the integrals in Equation 27 can-
not be evaluated analytically in general. The integral
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T ABL E I Expressions for the growth exponent, n, the overall activation energy, Q, and the rate constant, K0, to be inserted in Equations 25 and
36 for isothermal annealing and isochronal annealing, respectively. Results are given for mixed nucleation (site saturation and continuous nucleation)

and Avrami nucleation. For Cc, f (λt) and f (λ RT 2

QN�
), see Tables II–IV

Isothermal Isochronal

Mixed nuc
n d

m + 1

1+
(

r2
r1

)−1
d
m + 1

1+
(

r2
r1

)−1

Q
d
m QG+

(
n− d

m

)
QN

n

d
m QG+

(
n− d

m

)
QN

n

K n
0

gν
d
m

0

4
(

d
m +1

) 1
1+(r2/r1)−1




(
N∗

1

(
1 + r2

r1

)) 1
1+r2/r1

(
N01

(
1 +

(
r2
r1

)−1)) 1
1+(r2/r1)−1


 gν

d
m

0(
d
m +1

) 1
1+(r2/r1)−1




(
N∗

1

(QG)
d
m

(
1 + r2

r1

)) 1
1+r2/r1

(
Cc N01

(
1 +

(
r2
r1

)−1)) 1
1+(r2/r1)−1




r2
r1

(
1/

(
d
m + 1

))
N01 exp

(
− QN

RT

)
t

N∗
1

Cc Q
d
m
G N01 exp

(
− QN

RT

)
(

d
m +1

)
N∗

1

(
RT 2

�

)

Avrami
n n = d

m + 1

1+
(

r2
r1

) n = d
m + 1

1+
(

r2
r1

)

Q
d
m QG+

(
n− d

m

)
QN

n

d
m QG+

(
n− d

m

)
QN

n

K n
0

gN ′ f (λt)ν
d
m

0(
d
m +1

) (λ0)
1

1+r2/r1 (λt)
1

1+(r2/r1)−1


 gν

d
m

0 N ′ f

(
λ RT 2

QN�

)
d
m +1

(λ0)
1

1+r2/r1

(
λ RT 2

�

) 1
1+(r2/r1)−1

Cc




r2
r1

λt
d
m +1

Cc Q
d
m
G

d
m +1

(
RT 2

�
λ
)

Note: ν0 and QG have to be substituted by D0 and QD in case of volume diffusion controlled growth.

∫ T (t)
T (τ ) exp(− QG

RT ) dT in Equation 27 is called tempera-
ture integral and can be rewritten as [7]:

∫ T (t)

T (τ )
exp

(
− QG

RT

)
dT =

[∫ T (t)

0
exp

(
− QG

RT

)
dT

−
∫ T (τ )

0
exp

(
− QG

RT

)
dT

]

= T (t)

[∫ ∞

1

exp
(− QG

RT z
)

z2
dz

]

− T (τ )

[∫ ∞

1

exp
(− QG

RT (τ ) z
)

z2
dz

]
(28)

by using the substitutions z = T (t)/T and z = T (τ )/T
[7], respectively. Thus an analytical approximation of
the integrals becomes possible, using a series expansion
of the type [7, 14],

T

[∫ ∞

1

exp
(− QG

RT z
)

z2
dz

]

= RT 2

QG
exp

(
− QG

RT

) (
1 − 2

RT

QG
+ · · ·

)
(29)

Recognizing that in an alternating series the absolute er-
ror upon series truncation is less than the absolute value
of the first term neglected and that in most transforma-
tion reactions QG

RT � 1 (usually QG

RT ≥ 25), it is possible
to use only the first term of the series expansion in
Equation 29 without making an appreciable error.
Hence, upon applying twice the series expansion

discussed, Equation 28 becomes

∫ T (t)

T (τ )
exp

(
− QG

RT

)
dT = R

QG

[
T (t)2 exp

(
− QG

RT

)

− T (τ )2 exp

(
− QG

RT (τ )

)]
(30)

Using Equation 30, Equation 27 can be given as

V e = V gν
d
m

0

∫ T (t)

T0

(
1

�
d
m

N ∗
1 δ(T (τ ) − T0)

+ 1

�
d
m +1

N01 exp

(
− QN

RT (τ )

))

×
(

R

QG

(
T (t)2 exp

(
− QG

RT

)

− T (τ )2 exp

(
− QG

RT (τ )

))) d
m

dT (τ ) (31)

Applying the result of the Dirac function,∫
f (T (τ ))δ(T (τ ) − T0)dT (τ ) = f (T0), using again

the approximation for the temperature integral as in
Equation 30 and recognizing that T > T0 the analytical
solution for V e can be given as (see Appendix A)

V e = V gν
d
m

0 N ∗
1

(
1

QG

) d
m

exp

(
−

d
m QG

RT

) (
RT 2

�

) d
m

+ 1
d
m + 1

V gν
d
m

0 N01Cc exp

(
−

d
m QG + QN

RT

)

×
(

RT 2

�

) d
m +1

(32)
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T ABL E I I Expressions for the correction factor, Cc, (c.f., Table I)

d
m Cc

Interface-
controlled growth

1 2
QN(QN + QG)

2 6
QN(QN + QG)(QN + 2QG)

3 24
QN(QN + QG)(QN + 2QG)(QN + 3QG)

Diffusion-
controlled growth

1/2
[

QD

2QN

(
QN + 1

2 QD

) ]

1
[

2
QN(QN + QD)

]

3/2

[
5
2

Q
1
2
G (3QD + 4QN)

4QN

(
QN + 1

2 QD

)
(QN + QD)

(
QN + 3

2 QD

)
]

where T = T (t) and Cc is a constant, defined by
the activation energies of nucleation and growth (see
Table II).

Again, as in the isothermal case, the extended vol-
ume consists of two parts: V e

s due to pure site satu-
ration and V e

c due to pure continuous nucleation (c.f.,
Equation 16). Now the ratio of V e

s and V e
c is given

by,

V e
c

V e
s

= Cc Q
d
m

G N01 exp
(− QN

RT

)
(

d
m + 1

)
N ∗

1

(
RT 2

�

)
= r2

r1
(33)

Next, a treatment as performed between Equations 17
and 22 can be applied to rewrite V e in a similar way.
The result is:

V e = V gν
d
m

0(
d
m + 1

) 1
1+(r2/r1)−1

[(
N ∗

1

(QG)
d
m

(
1 + r2

r1

)) 1
1+r2/r1

×
(

Cc N01

(
1 +

(
r2

r1

)−1)) 1
1+(r2/r1)−1

]

×
[

exp

(
−

d
m QG + 1

1+(r2/r1)−1 QN

RT

)

×
(

RT 2

�

)( d
m + 1

1+(r2/r1)−1 )]
(34)

After substitution of Equation 34, Equation 12 can be
rewritten as:

ln (− ln (1 − f ))

= ln




gν
d
m

0

( d
m +1)

1
1+(r2/r1)−1

( N ∗
1

(QG)
d
m

(
1 + r2

r1

)) 1
1+r2/r1

(
Cc N01

(
1 + ( r2

r1

)−1)) 1
1+(r2/r1)−1




−
( d

m QG + 1
1+(r2/r1)−1 QN

RT

)

+

 d

m
+ 1

1 + ( r2

r1

)−1


 ln

(
RT 2

�

)
(35)

This result can be compared with the correspondingly
rewritten Equation 13, i.e., Equation 24. By comparing
Equations 35 and 24, temperature dependent values of
n, Q and K n

0 result, which have been gathered in Table I.
Apparently, in the case of isochronal annealing, α can
be identified with RT 2

�
.

It is concluded that the degree of transformation in
this case of isochronal annealing can be represented
by,

f = 1 − exp

(
K0(T )n(T) exp

(
−n(T )Q(T )

RT

)

×
(

RT 2

�

)n(T)
)

(36)

where the kinetic parameters, n, Q and K0 are tempera-
ture dependent. It should be noted that Equation 36 does
not hold for transformations upon cooling because of
the approximation used for the temperature integral in
Equation 32 (see Appendix A).

3.3. Isothermal transformation: Avrami
nucleation and interface-controlled
growth

Using Equations 8b and 9a, the extended volume can
then be given as (c.f., Equation 10):

V e = V
∫ t

0
gN ′λ exp (−λτ )

×
(∫ t

τ

ν0 exp

(
− QG

RT

)
dt

) d
m

dτ

= V gN ′ν
d
m
0 exp

(
−

d
m QG

RT

)

×
∫ t

0
λ exp (−λτ ) (t − τ )

d
m dτ (37)

During isothermal annealing, λ is a constant, so analyt-
ical integration of Equation 37 is possible. It is obtained
(c.f., Appendix B),

V e = V gN ′ν
d
m

0 exp

(
−

d
m QG

RT

)
t

d
m

(
λt

d
m + 1

)
f (λt)

= V e
s

(
λt

d
m + 1

)
f (λt) (38)

where V e
s is defined according to Equation 16a. Expres-

sions for f (λt) for different d
m ratios have been gathered

in Table III. By rewriting Equation 38, an alternative
formulation is possible,

V e = 1
d
m + 1

VgN ′λ0ν
d
m

0 exp

(
−

d
m QG + QN

RT

)
t

d
m +1 f (λt)

= V e
c f (λt) (39)
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T ABL E I I I Expressions for f (λt), (c.f., Table I)

d
m f (λt)

Interface-
controlled growth

1
(

2 exp(−λt) + 2λt−2
(λt)2

)
2

(
6 + 3(λt)2−6 exp(−λt)−6λt

(λt)3

)
3

(
4(λt)3 + 24 exp(−λt)−12(λt)2 + 24λt−24

(λt)4

)
Diffusion-

controlled growth
1/2

(
1 + λt−exp(−λt)

2λt + 2 exp(−λt) + 2λt−(λt)2−2
2(λt)2

)
1

(
2 exp(−λt) + 2λt−2

(λt)2

)
3/2

(
6−6 exp(−λt) + 3(λt)2 + (λt)3−6λt

2(λt)3

+ 2 exp(−λt)+2λt−(λt)2−2
2(λt)2

)

where V e
c is defined according to Equation 16b. Thus,

V e can be described as,

V e = 1

2

(
V e

s

(
λt

d
m + 1

)
f (λt) + V e

c f (λt)

)
(40)

The ratio of V e
s and V e

c is now given by,

V e
c

V e
s

= λt
d
m + 1

= r2

r1
(41)

Next, a treatment as performed between Equations 17
and 22 can be applied, to rewrite V e in a similar way
(see also Appendix B). The result is,

V e = V
gN ′(

d
m + 1

)ν
d
m
0 (λ0 f (λt))

1
1+r2/r1 (λt f (λt))

1

1+(r2/r1)−1

× exp

(
−

d
m QG + 1

1+(r2/r1) QN

RT

)
t ( d

m )+ 1
1+(r2/r1)

(42)

Combining Equations 42 and 12, it is concluded that
the degree of transformation can be represented with
analytical expressions for the time dependent kinetic
parameters, n, Q and K n

0 , as gathered in Table I. Again
(c.f., Section 3.1), α can be identified by t .

3.4. Isochronal transformation: Avrami
nucleation and interface-controlled
growth

Using Equations 8a and 9b with the the definitions for
T0 and�given below Equation 26, the extended volume
can then be given as (c.f., Equation 10):

V e = V
∫ t

0
gN ′λ exp

(
−

∫ τ

0
λdt

)

×
(∫ T (t)

T (τ )

ν

�
dT (t)

) d
m

dτ

= V
∫ T (t)

T0

N ′gν
d
m

0

�
d
m +1

λ

× exp

(
−

∫ T (τ )

T0

λ0 exp

(
− QN

RT (t)

)
d

T (t)

�

)

×
(∫ T (t)

T (τ )
exp

(
− QG

RT

)
dT (t)

) d
m

dT (τ )

= V
∫ T (t)

T0

N ′gν
d
m

0

�
d
m +1

λ exp

(
− Rλ

QN�
T (τ )2

)

×
(∫ T (t)

T (τ )
exp

(
− QG

RT (t)

)
dT (t)

) d
m

dT (τ ) (43)

where, for the last line of Equation 43 the same proce-
dure as indicated by Equations 28–30 has been applied,
and the term involving T0 is deleted (see Appendix A).
Adopting in the following the same procedures as in-
dicated by Equations 28–32 and by Equations 38–40
and using a series expansion for the first exponential
function in Equation 43, Equation 43 can be written as
(see Appendix C),

V e = V
∫ T

T0

N ′gν
d
m

0

�
d
m +1

λ

[
1 − T (τ )2 Rλ

QN�

+ 1

2!

(
T (τ )2 Rλ

QN�

)2

+ · · ·

+ (−1)n 1

n!

(
T (τ )2 Rλ

QN�

)n]

×
[

R

QG

(
T 2 exp

(
− QG

RT

)

− T (τ )2 exp

(
− QG

RT (τ )

))] d
m

dT (τ )

= 1

2

(
V e

s
Cc Q

d
m
G

d
m + 1

(
RT 2

�
λ

)
f

(
λ

RT 2

QN�

)

+ V e
c f

(
λ

RT 2

QN�

))
(44)

It should be noted that Equation 44 does not hold for
transformation on cooling, because of the approxima-
tion used for the temperature integral (see Appendix A).
In this case, V e

s and V e
c , as incorporated in Equation 44,

are given by,

V e
s = V gN ′ν

d
m

0

(
1

QG

) d
m

exp

(
−

d
m QG

RT

)(
RT 2

�

) d
m

(45a)

V e
c = 1

d
m + 1

V gN ′ν
d
m
0 λ0Cc

× exp

(
− QN + d

m QG

RT

)(
RT 2

�

) d
m +1

(45b)

The ratio of the two extended volumes equals,

V e
c

V e
s

= r2

r1
= Cc Q

d
m

G
d
m + 1

(
RT 2

�
λ

)
(46)

1627



T ABL E IV Expressions for f (λ RT 2

QN�
), (c.f., Table I)

d
m f

(
λ RT 2

QN�

)

Interface-controlled growth 1
[(

1 + ∑n
n=1 (−1)n 1

(n + 1)!
QN + QG

(n + 1)QN + QG

(
λ RT 2

QN�

)n)]
2

[(
1 + ∑n

n=1 (−1)n 1
(n + 1)!

(QN + QG)(QN + 2QG)
((n + 1)QN + QG)((n + 1)QN + 2QG)

(
λ RT 2

QN�

)n)]
3

[(
1 + ∑n

n=1 (−1)n 1
(n + 1)!

(QN + QG)(QN + 2QG)(QN + 3QG)
((n + 1)QN + QG)((n + 1)QN + 2QG)((n + 1)QN + 3QG)

(
λ RT 2

QN�

)n)]

Diffusion-controlled growth 1/2

[(
1 + ∑n

n=1 (−1)n 1
(n + 1)!

(
QN + 1

2 QD

)
(

(n + 1)QN + 1
2 QD

) (
λ RT 2

QN�

)n
)]

1

[(
1 + ∑n

n=1 (−1)n 1
(n + 1)!

(
QN + 1

2 QD

)
(QN + QG)(

(n + 1)QN + 1
2 QD

)
((n + 1)QN + QD)

(
λ RT 2

QN�

)n
)]

3/2

[(
1 + ∑n

n=1 (−1)n 1
(n + 1)!

(
QN + 1

2 QD

)
(QN + QD)

(
QN + 3

2 QD

)
(

(n + 1)QN + 1
2 QD

)
((n + 1)QN + QD)

(
(n + 1)QN + 3

2 QD

) (
λ RT 2

QN�

)n
)]

The expressions for Cc and f (λ RT 2

QN�
) have been gath-

ered in Tables II and IV. Next, a treatment as performed
between Equations 17 and 22 can be applied, to rewrite
V e in a similar way. The result is

V e =




V gν
d
m

0 N ′ f
(
λ RT 2

QN�

)
d
m +1

(λ0)
1

1+r2/r1(
λ RT 2

�

) 1
1+(r2/r1)−1

Cc




× exp

(
−

d
m QG + 1

1+(r2/r1) QN

RT

)

×
(

RT 2

�

)( d
m + 1

1+r2/r1
)

(47)

Combining Equations 47 and 12, it is concluded that
the degree of transformation can be represented by
Equation 36 with analytical expressions for the tem-
perature dependent kinetic parameters, n, Q and K n

0 ,
as gathered in Table I. Again (c.f., Section 3.2), α can
be identified with RT2/�.

4. Analytical models for transformations
involving volume diffusion-controlled
growth

Detailed calculations analogous to those performed
in Section 3 for transformations involving interface-
controlled growth have been carried out for transfor-
mations involving volume diffusion controlled growth.
The results demonstrate that no principal difference
occurs between the kinetic parameters for these two
growth modes, but different values occur for d

m and
different expressions result for f (λt) (isothermal an-
nealing), f (λ RT 2

QN�
) (isochronal annealing), r2

r1
and Cc

(see Tables I–IV). Furthermore, the pre-exponential
factor, ν0 and the activation energy, QG for growth
have to be substituted in the principal expressions pre-
sented for n, Q and K n

0 , in Table I by D0 and QD,
the pre-exponential factor and the activation energy for
diffusion.

No matter which kind of the considered nucleation
or growth mode prevails, the transformed fraction can
always be described with Equation 25 for isothermal

TABLE V Values of the kinetic parameters used for the numerical
calculations of isothermally and isochronally conducted phase trans-
formations for the case of mixed nucleation or Avrami nucleation and
interface controlled growth

Mixed nucleation Avrami nucleation

QG (kJ/mol) 200 QG (kJ/mol) 200
QN (kJ/mol) 100 QN (kJ/mol) 100
ν0 (s−1) 109 ν0 (s−1) 109

d/m 3 d/m 3

N01 (s−1 m−3) 5 × 1015 N ′ (m−3) 1015

N∗
1 (m−3) From 0 to 1012 λ0 (s−1) From 104 to 108

transformation and with Equation 36 for isochronal
transformation, and the relation between the effec-
tive activation energy, Q and the growth exponent, n,
(Equation 1), can always be validated.

5. The analytical model
The general analytical model presented here allows
identification of the individual roles of nucleation,
growth and experimental parameters and explains vari-
ations in n and Q during progressing transformations.

5.1. Influences of nucleation model
parameters and temperature on
isothermal transformation behaviour

Using the analytical description (Equation 25) in com-
bination with Tables I and III and values for the model
parameters as given in Table V, results of d f /dt vs.
t and n vs. t for the case of isothermal transforma-
tion with mixed nucleation, have been calculated for
a fixed temperature and for specific values of N ∗

1 and
N01 (see Fig. 1a and b); the influence of the tempera-
ture is shown in Fig. 2a and b. The analogous results for
the case of isothermal transformation involving Avrami
nucleation have been calculated for different values of
λ0 (see Fig. 3a and b). The influence of N ′ is not given
here because it is small as compared to the effect of
variations in λ0.

If N ∗
1 = 0 or λ0 → 0, continuous nucleation pre-

vails, and the value of n is constant (=4) throughout
the transformation (Figs 1 and 3). With increasing N ∗

1
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Figure 1 The transformation rate d f /dt (a), and the growth exponent
n (b) as a function of time at 640 K, for mixed nucleation with N01 =
5 × 1015 (s−1 m−3).

or λ0, implying increasing importance of site saturation,
the value of n decreases progressively, and depends dis-
tinctly on transformation time, t . If N01 = 0 or λ → ∞,
pure site saturation prevails and the value of n is con-
stant (=3) throughout the transformation (Figs 1 and
3). Clearly, if extreme cases of nucleation do not occur,
the assumption of a growth (Avrami) exponent that is
constant during the transformation (as is often assumed
in practice) is unjustified.

It is apparent from Fig. 2 that the transformation rate,
d f /dt , peak maximum, is very sensitive to T . If, for the
case considered (c.f., Table V), T decreases from 680
to 620 K, the d f /dt peak becomes very much broader,
indicating that much more time is needed for the trans-
formation. The variation of n during the transformation
increases upon decreasing temperature, but this effect
is relatively less propounced than the discussed effect
on d f /dt .

5.2. Influence of the heating rate on
isochronal transformation behaviour

Obviously, the heating rate strongly influences the
transformation rate as a function of temperature upon
isochronal annealing (Fig. 4a). Upon isochronal an-
nealing, the value of n (i) changes pronouncedly upon
annealing and (ii) the variation of n upon annealing
strongly depends on the heating rate (Fig. 4b). Only
if extreme cases of nucleation occur, pure continu-
ous nucleation or pure site saturation, the value of

Figure 2 The transformation rate d f /dt as a function of time (a), and
the growth exponent n as a function of fraction transformed (b) for
isothermal annealing at temperatures of 500, 550, 620 640, 660, 680,
and 780 K, for mixed nucleation with N01 = 5 × 1015 (s−1 m−3) and
N∗

1 = 5 × 1010 (m−3). (Note that Fig. 2a exhibits the results of four
intermediate temperatures).

Figure 3 The transformation rate d f /dt (a), and the growth exponent n
(b) as a function of time at 580 K, for Avrami nucleation with N ′ = 1015

(m−3), and different values for λ0 (s−1).
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Figure 4 The transformation rate d f /dt (a), and the growth exponent
n (b) as a function of temperature, for isochronal annealing at heating
rates: 0.01, 0.1, 1, 10, 100 K/s, ((×) with N01 = 5×1015 (s−1 m−3) and
N∗

1 = 0 (m−3) i.e., pure continuous nucleation; (−) with N01 = 5×1015

(s−1 m−3) and N∗
1 = 1011 (m−3) i.e., mixed nucleation; (◦) with N01 =

0 (s−1 m−3) and N∗
1 = 1012 (m−3) i.e., pure site saturation).

n is independent of �, and is constant (4 or 3; see
Fig. 4b).

5.3. Variation of the effective
activation energy

The relation between the effective, overall activation
energy, Q, and the separate activation energies for nu-
cleation and growth, QN and QG (c.f., Equation 1) has
been proposed in [8] on a numerical basis; the present
paper has analytically validated Equation 1 for also not
extreme, not limiting cases of transformation kinetics
(Table I). Because QN and QG (or QD) are taken to be
constant (see Equations 6–11), according to Equation 1
the effective activation energy, Q, therefore, depends on
time and/or temperature through the growth exponent,
n. Only if extreme, limiting kinetic conditions hold, Q
is constant during the transformation. In practice, a gen-
uine variation of Q with progressing transformation is
often ignored until now and some average values for Q
is determined upon fitting a kinetic model.

6. Applicability of the analytical model
The transformation rate can be numerically calculated
exactly, as a function of time (isothermal annealing)
or temperature (isochronal annealing), on the basis of
Equation 12 by numerical integration of Equation 10

for Ve. This exact result can then be compared with
corresponding results from the analytical approaches,
Equations 25 and 36, respectively. Thereby the validity
of approximations used in the analytical treatment (see
Sections 3 and 4) is tested.

Using the values for the model parameters given in
Table V the numerical calculation of the transformation
rate has been performed for five different temperatures
(isothermal annealing) and five different heating rates
(isochronal annealing). Using the same values for the
model parameters and the values of T or � chosen
for the numerical calculation, the corresponding results
of the (approximate) analytical relations for d f /dt , or
d f /dT (see Equations 25 and 36) have been calculated
as well. The results have been depicted in Fig. 5.

Alternatively, fitting of the analytical model to the ex-
act numerical data provides a set of values for the model
parameters (this resembles the procedure performed in
practice [8]), which can then be compared with the ex-
act values used in the numerical calculation. This fitting
is performed by fitting Equations 25 and 36, using the
appropriate analytical solutions for the kinetic parame-
ters gathered in Tables I–IV, to, respectively, the isother-
mal anneals simultaneously (Fig. 5a and Equation 25)
and the isochronal anneals simultaneously (Fig. 5b and
Equation 36). The results are presented in Table VI. It
follows from Fig. 5 and Table VI that the analytical
results obtained in this work agree very well, i.e., in

Figure 5 The transformation rate as a function of time at various tem-
peratures (a) and as a function of temperature at various heating rates
(b) calculated, exactly numerically and approximately analytically. The
results shown in (a) pertain to mixed nucleation with N01 = 5 × 1015

(s−1 m−3) and N∗
1 = 5 × 1010 (m−3); the results shown in (b) pertain to

Avrami nucleation with N ′ = 1015 (m−3) and λ0 = 2 × 106 (s−1).
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T ABL E VI Values of the kinetic parameters as used for numerical, exact calculations of phase transformation kinetics (see Table V) and the
corresponding values as determined by fitting the analytical model

QN QG N01 N∗
1 N ′ λ0

Isothermal transformation
Mixed nucleation 100 200 5 × 1015 5 × 1010

100 ± 0.1 200 ± 0.1 From 2 × 1015 From 3 × 1010

to 7 × 1015 to 7 × 1010

Avrami nucleation 100 200 1015 2 × 106

100 ± 1 200 ± 2 From 8 × 1014 From 106

to 4 × 1015 to 5 × 106

Isochronal transformation
Mixed nucleation 100 200 5 × 1015 108

100 ± 1 200 ± 2 From 1015 From 5 × 107

to 8 × 1015 to 3 × 108

Avrami nucleation 100 200 1015 108

100 ± 3 200 ± 4 From 5 × 1014 From 5 × 107

to 5 × 1015 to 5 × 108

any case within experimental accuracy, with the exact
solutions.

7. Conclusions
The analytical model presented in this work provides
a precise description of phase transformation kinet-
ics during both isothermal and isochronal anneals, for
cases where extreme kinetic conditions (site saturation
or continuous nucleation) cannot be supposed. The pro-
posed formulas have been derived in particular con-
sidering mixed nucleation (a mixture of site satura-
tion and continuous nucleation), Avrami nucleation,
interface-controlled growth and volume diffusion con-
trolled growth. No matter which of these nucleation
or growth modes determine the transformation mech-
anism, the degree of isothermal or isochronal transfor-
mation can be described adequately by combinations
of the kinetics parameters, n, Q and K0, according to
Equations 25 and 36

f = 1 − exp(K0(t)n(t) exp

(
−n(t)Q(t)

RT
)tn(t)

)
,

for isothermal anneals

V e = V gν0

∫ T

T0

(
1

�
N ∗

1 δ(T (τ ) − T0) + 1

�2
N01 exp

(
− QN

RT (τ )

))

×
(

R

QG

(
T 2 exp

(
− QG

RT

)
− T (τ )2 exp

(
− QG

RT (τ )

)))
dT (τ )

= V gν0

∫ T

T0

(
1

�
N ∗

1 δ(T (τ ) − T0)

)
×

(
R

QG

(
T 2 exp

(
− QG

RT

)
− T (τ )2 exp

(
− QG

RT (τ )

)))
dT (τ )

+ V gν0

∫ T

T0

(
1

�2
N01 exp

(
− QN

RT (τ )

))
×

(
R

QG

(
T 2 exp

(
− QG

RT

)
− T (τ )2 exp

(
− QG

RT (τ )

)))
dT (τ )

= V gν0 N ∗
1

(
R

QG

)[
exp

(
− QG

RT

)
T 2

�
− exp

(
− QG

RT0

)
T 2

0

�

]

+ V gν0
RT 2

QG
exp

(
− QG

RT

) ∫ T

T0

(
1

�2
N01 exp

(
− QN

RT (τ )

))
dT (τ )

− V gν0
R

QG

∫ T

T0

(
T (τ )2

�2
N01 exp

(
− QN + QG

RT (τ )

))
dT (τ ) (A-1)

f = 1 − exp

(
K0(T )n(T) exp

(
−n(T )Q(T )

RT

)

×
(

RT 2

�

)n(T))
, for isochronal anneals

Analytical formulations for the time and temperature
dependencies of the kinetic parameters can be given
(Tables I–IV).

The effective, overall, time and temperature depen-
dent activation energy can always be analytically in-
terpreted as a combination of the constant activation
energies for nucleation and growth, according to

Q =
d
m QG + (

n − d
m

)
QN

n

Therefore an observation of change of Q with time or
temperature need not be considered as an experimental
artifact or as a consequence of change of transformation
mechanism.

Appendix A
Equation 31 can be described (with T = T (t) and to
avoid unnecessary, nonessential complications in the
following formulas, d/m = 1) as
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Recognizing the exponential integral in Equation 28,
the exponential terms in Equation A-1 can be described
as,

∫ T

T0

(
1

�2
N01 exp

(
− QN

RT (τ )

))
dT (τ )

= N01

�2

[ ∫ T

0
exp

(
− QG

RT (τ )

)
dT (τ )

−
∫ T0

0
exp

(
− QG

RT (τ )

)
dT (τ )

]

= N01

�2
T

[∫ ∞

1

exp
(− QG

RT z
)

z2
dz

]

− N01

�2
T0

[∫ ∞

1

exp
(− QG

RT0
z
)

z2
dz

]
(A-2)

∫ T

T0

(
T (τ )2

�2
N01 exp

(
− QN + QG

RT (τ )

))
dT (τ )

= N01

�2

[ ∫ T

0
T (τ )2 exp

(
− QN + QG

RT (τ )

)
dT (τ )

−
∫ T0

0
T (τ )2 exp

(
− QN + QG

RT (τ )

)
dT (τ )

]

= N01

�2
T 3

[∫ ∞

1

exp
(− QN+QG

RT z
)

z4
dz

]

− N01

�2
T 3

0

[∫ ∞

1

exp
(− QN+QG

RT0
z
)

z4
dz

]
(A-3)

by using the substitutions z = T/T (τ ) and z =
T0/T (τ ), respectively.

Applying the approximations as indicated by
Equation 29 to Equations A-2 and A-3, Equation A-
1 can then be written as,

V e = V gν0 N ∗
1

(
R

QG

)

×
[

T 2

�2
exp

(
− QG

RT

)
− T 2

0

�2
exp

(
− QG

RT0

)]

+ V gν0 N01
R2T 2

QN QG
exp

(
− QG

RT

)

×
[

T 2

�2
exp

(
− QN

RT

)
− T 2

o

�2
exp

(
− QN

RT0

)]

− V gν0 N01
R2

QG(QN + QG)

[
T 4

�2
exp

(
− QN + QG

RT

)

− T 4
0

�2
exp

(
− QN + QG

RT0

)]
(A-4)

Since, in the temperature range where the
phase transformation occurs T > T0, values of

terms [ T 2

�2 exp(− QG

RT0
)], [ T 2

0

�2 exp(− QN

RT0
)] and [ T 4

0

�2 exp

(− QN+QG

RT0
)] can be neglected, in comparison with the

values of the corresponding terms at T . Thus Equation
A-4 becomes,

V e = V gν0 N ∗
1

(
1

QG

)
exp

(
− QG

RT

)(
RT 2

�

)

+ 1

2
V gν0 N01Cc exp

(
− QG + QN

RT

)(
RT 2

�

)2

with CC = 2
QN(QN+QG) ;

Analogously, for d/m = 2

V e = V gν0 N ∗
1

(
1

QG

)2

exp

(
−2QG

RT

)(
RT 2

�

)2

+ 1

3
V gν0 N01Cc exp

(
−2QG + QN

RT

)(
RT 2

�

)3

with CC = 6
QN(QN+QG)(QN+2QG) and for d/m = 3

V e = V gν0 N ∗
1

(
1

QG

)3

exp

(
−3QG

RT

)(
RT 2

�

)3

+ 1

4
V gν0 N01Cc exp

(
−3QG + QN

RT

)(
RT 2

�

)4

with Cc = 24
QN(QN+QG)(QN+2QG)(QN+3QG) .

Appendix B
Employing

∫
udv = uv − ∫

v du, the analytical inte-
gration in Equation 37 yields for d/m = 1

∫ t

0
λ exp(−λτ )(t − τ ) dτ

= − exp(λt)(t − τ )t
0 −

∫ t

0
exp(−λτ ) dτ

= exp(−λt) + λt − 1

λ
(B-1)

Substituting B-1 into Equation 37 results in,

V e = (V gN ′ν0 exp

(
−QG

RT

))(
exp(−λt) + λt − 1

λt

)
t

(B-2)

B-2 can be rewritten as,

V e =
(

1/2V gN ′ν0λ0 exp

(
− QG + QN

RT

))

×
(

2 exp(−λt) + 2λt − 2

(λt)2

)
t2 (B-3)

If f (λt) is given by f (λt) = ( 2 exp(−λt)+2λt−2
(λt)2 ),then

Equation 40 results. Analogously, Equation 40 can
also be obtained, as a form, for d/m = 2, 3, with
the corresponding expressions for f (λt) shown in
Table III.
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For the values N ′ and λ0 in Equations B-2 and B-3,
different values (N ′)′ and (λ0)′ can be chosen in such a
way that V e is due to only site saturation,

V e
s′ = V (N ′)′gν

d
m
0 exp

(
−

d
m QG

RT

)
t

d
m (B-4)

or that V e is due to only continuous nucleation

V e
c′ =

(
1

d
m + 1

)
V (N ′)′(λ0)′gν

d
m
0

× exp

(
−

d
m QG + QN

RT

)
t

d
m +1 (B-5)

V e
s′ = V e

c′ = V e (B-6)

From Equations B-2 and B-3 it then follows,

V e
c′ = f (λt)V e

c (B-7)

V e
s′ = f (λt)

λt
d
m + 1

V e
s (B-8)

Combining Equations 40 and 41 results in

V e = 1

2

(
V e

s

(
λt

d
m + 1

)
f (λt) + V e

c f (λt))

= 1

2
f (λt)

(
1 + λt

d
m + 1

)[
r2

r1 + r2
V e

s + r1

r1 + r2
V e

c

]

= 1

2

1

r1 + r2

[
r2 f (λt)

λt
d
m + 1

V e
s

+ r1
λt

d
m + 1

f (λt)V e
s + r1 f (λt)V e

c + r2 f (λt)V e
c

]

= 1

r1 + r2

[
r2 f (λt)

λt
d
m + 1

V e
s + r1 f (λt)V e

c

]

(B-9)

Finally, substitution of Equations B-7 and B-8 in
Equation B-9 gives,

V e = 1

r1 + r2

[
r2V e

s′ + r1V e
c′
]

(B-10)

Appendix C
For Avrami nucleation, the extended volume in case of
isochronal annealing can be expressed as:

V e = V
∫ T (t)

T0

N ′gν
d
m

0

�
d
m +1

λ

[
1 − T (τ )2 Rλ

QN�

+ 1

2!

(
T (τ )2 Rλ

QN�

)2

+ (−1)n 1

n!

(
T (τ )2 Rλ

QN�

)n]

×
[

R

QG

(
T (t)2 exp

(
− QG

RT

)

− T (τ )2 exp

(
− QG

RT (τ )

))] d
m

dT (τ ) (C-1)

with λ = λ0 exp(− QN

RT (τ ) ).
When d/m = 1,

V e = V gN ′ν0
RT (t)2

QG�2
exp

(
− QG

RT

) ∫ T (t)

T0

× λ

[
1 − T (τ )2 Rλ

QN�
+ 1

2!

(
T (τ )2 Rλ

QN�

)2

+ · · · + (−1)n 1
n!

(
T (τ )2 Rλ

QN�

)n

]
dT (τ )

− V gN ′ν0
R

QG�2

∫ T (t)

T0

× λ


1 − T (τ )2 Rλ

QN�
+ 1

2!

(
T (τ )2 Rλ

QN�

)2

+ · · · + (−1)n 1
n!

(
T (τ )2 Rλ

QN�

)n




×
[

(T (τ )2 exp

(
− QG

RTτ

))]
dT (τ ) (C-2)

After some arrangement, Equation C-2 can be
rewritten as,

V e = V gN ′ν0
RT (t)2

QG�2
exp

(
− QG

RT

)




[∫ T (t)

T0

λ0 exp

(
− QN

RT (τ )

)
dT (τ )

]

−
[

R

QN�

∫ T (t)

T0

λ2
0(T (τ ))2 exp

(
− 2QN

RT (τ )

)
dT (τ )

]

.........

+
[

(−1)n 1

n!

(
R

QN�

)n ∫ T (t)

T0

λn+1
0 (T (τ ))2n exp

(
− (n + 1)QN

RT (τ )

)
dT (τ )

]

− V gN ′ν0
R

QG�2




[∫ T (t)
T0

λ0(T (τ ))2 exp
(− QN+QG

RT (τ )

)
dT (τ )

]
− [

R
QN�

∫ T (t)
T0

λ2
0(T (τ ))4 exp

(− 2QN+QG

RT (τ )

)
dT (τ )

]
.......

+ [
(−1)n 1

n!

(
R

QN�

)n ∫ T (t)
T0

λn+1
0 (T (τ ))2n+2 exp

(− (n+1)QN+QG

RT (τ )

)
dT (τ )

]




(C-3)
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Using the procedure as indicated in Equations 28–30
and Equations A-1 to A-4, the exponential integration
incorporated in Equation C-3 can be given with T (t) =
T as,

∫ T

T0

(
λ0 exp

(
− QN

RT (τ )

))
dT (τ ) = RT 2

QN
λ

∫ T

T0

(
λ2

0T (τ )2 exp

(
− 2QN

RT (τ )

))
dT (τ ) = RT 4

2QN
λ2

. . .∫ T

T0

(
λn+1

0 T (τ )2n exp

(
− (n + 1)QN

RT (τ )

))
dT (τ )

= RT 2n+2

(n + 1)QN
λn+1

. . .∫ T

T0

(
λn+1

0 T (τ )2n+2 exp

(
− (n + 1)QN + QG

RT (τ )

))
dT (τ )

= RT 2n+4

(n + 1)QN + QG
λn+1

Substitution of these expressions into Equation C-3
results in

V e = V gN ′ν0
1

QN QG
exp

(
− QN + QG

RT

)(
RT 2

�

)2

×
(

1 − (
λ RT 2

QN�

) QN QG

2QN QG
+ · · −

· · +(−1)n 1
n!

(
λ RT 2

QN�

)n QN QG

(n+1)Qn QG

)

− V gN ′ν
d
m

0

1

QG(QN + QG)
exp

(
− QN + QG

RT

)

×
(

RT 2

�

)2
(

1 − (
λ RT 2

QN�

) QN+QG

2QN+QG
+ · · − · · +

(−1)n 1
n!

(
λ RT 2

QN�

)n QN+QG

(n+1)QN+QG

)

= V gN ′ν0λ0
1

2

2

QN(QN + QG)

× exp

(
− QN + QG

RT

)(
RT 2

�

)2

×
[(

1 +
n∑

n=1

(−1)n 1

(n + 1)!

QN + QG

(n + 1)QN + QG

×
(

λ
RT 2

QN�

)n
)]

= V gN ′ν0
1

QG
exp

(
− QG

RT

)(
RT 2

�

)

×
(

QG

QN(QN + QG)

RT 2

�
λ

)

×
(

1+
n∑

n=1

(−1)n 1

(n + 1)!

QN + QG

(n + 1)QN + QG

×
(

λ
RT 2

QN�

)n
)

= 1

2

(
V e

s
Cc QG

2

(
RT 2

�
λ

)
f

(
λ

RT 2

QN�

)

+ V e
c f

(
λ

RT 2

QN�

))
(C-4)

The expressions for the extended volume in the case
of d/m = 2, and 3, are similar to the given above for
d/m = 1. Finally, a general expression can be given as
Equation 44 with Cc and f (λ RT 2

QN�
) given in Tables II

and IV.
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